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Abstract

The detection and timing of seismic arrivals play a critical role in the ability to locate seismic
events, especially at low magnitude. Errors can occur with the determination of the timing
of the arrivals, whether these errors are made by automated processing or by an analyst.
One of the major obstacles encountered in properly estimating travel-time picking error is
the lack of a clear and comprehensive discussion of all of the factors that in
uence phase
picks. This report discusses possible factors that need to be modeled to properly study phase
arrival time picking errors. We have developed a multivariate statistical model, experimental
design, and analysis strategy that can be used in this study. We have embedded a general
form of the International Data Center(IDC)/U.S. National Data Center(USNDC) phase pick
measurement error model into our statistical model. We can use this statistical model to
optimally calibrate a picking error model to regional data. A follow-on report will present the
results of this analysis plan applied to an implementation of an experiment/data-gathering
task.
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1 Introduction

The detection and timing of arrivals of seismic waves play a critical role in our ability to locate
seismic events, especially those of low magnitude. One of the major obstacles encountered
in properly estimating travel-time picking error is the lack of a clear and comprehensive
discussion of all of the sources of variance in measured travel times. This paper discusses
possible sources that may impact arrival-timing errors and develops a statistical framework
that can then be utilized for modeling picking error estimation. We begin with a review of
the current methodology for dealing with measurement error for event location. In Section
2 we discuss factors that in
uence signal quality. Section 3 discusses analyst factors that
in
uence phase arrival time picking error. In Section 4 we propose an experimental design
and statistical model that can be used to study factors that in
uence phase arrival pick
errors and calibrate a pick error model to regional data. In Section 5 we review the data
analysis process associated with our statistical model. Section 6 summarizes the paper and
describes a planned follow-on report.

1.1 Uncertainty Propagation for Event Location

In the location method currently employed by both the U.S. National Data Center(USNDC)
and the International Data Centre(IDC), the weighting of arrival picks is formulated as the
quadratic sum of modeling (�2

Model) and measurement (�2
Measurement) errors, where the total

error for an arrival is �2
Total = �2

Model + �2
Measurement. The inverse of the total error assigned

to the arrival time is the weight used in the location inversion. In current operations, the
modeling error for each phase has been de�ned as a simple function of distance derived by
comparing model predictions with measured arrival times for ground truth events. More
recent work has focussed on extending the functional dependence to two or three dimensions
with the use of various interpolation algorithms such as kriging [Schultz et al., 1998]. In fact,
these are Bayesian methods that embed 2-D or 3-D empirically derived information where
available into a simple radially distance-dependent background model, hence assuring the
best results both for calibrated and uncalibrated regions. The treatment of measurement
error is even simpler. At the IDC/USNDC, phase pick measurement error is currently
modeled as a function of signal-to-noise ratio (SNR) only. The general model is

�Measurement =

8><
>:

�0 sec if SNR < �L


 �0 sec if SNR > �U

�0 �
�0�
 �0

log
10
(�U )�log10(�L)

log10(SNR=�L) sec otherwise

0 < 
 < 1:

(1)
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This simple model accounts for the most obvious and perhaps the most signi�cant factor
which contributes to the measurement error, namely the quality of the signal, but as we
shall show in this paper, it ignores many other factors which, we believe, can and should be
accounted for.

1.2 Regional vs. Teleseismic Phase Arrival Picks

The current measurement error estimate for teleseismic P -wave phase arrivals, which is
based on the SNR alone, has the functional form given in Equation 1. This model must be
properly �tted to regional data. Regional phases travel through the heterogeneous crust and
upper mantle, which usually results in more than one raypath, and hence emergent arrivals
even when the SNR is high. In contrast, teleseismic P -waves usually have just one raypath
because they travel mostly through the mantle. Thus, by their nature, regional phases are
usually more di�cult to pick, either by an automated process or by an analyst, and therefore
exhibit higher measurement errors for comparable SNR signals.

1.3 Factors A�ecting Phase Arrival Timing

Two basic factors determine how accurately the travel time of a phase can be picked:

� the quality of the observed seismic phase and

� the technical training and experience of the analyst making the pick.

The signal quality impacts both automated detection and an analyst's ability to pick an
arrival. We begin by discussing the signal quality e�ects and then the e�ects that impact
analysts.

2 Signal Quality Factors

In this section, we brie
y discuss the factors that a�ect either the signal or noise character-
istics. Some of these factors can be accounted for directly with analytic formulas, whereas
others are more appropriately dealt with as probability distributions. We group the factors
into three sections: source e�ects, propagation/site e�ects, and other e�ects.

2.1 Source Factors

Several source e�ects can impact the quality of phase arrivals: magnitude, phase excitation,
focal mechanism, and the source time function. For event magnitude (size), larger events
usually lead to larger phase amplitudes (higher SNR), which should make the pick more
accurate. Even emergent arrivals can be easier to pick if they exhibit higher SNR. Phase
excitation, or the amount of energy coupled into each phase, is not expected to be the same
for all phases. The same event might be expected to have smaller amplitudes (and therefore
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a higher picking error) for one phase vs. another. The focal mechanisms for earthquakes
(double couple sources) dictate that energy does not radiate equally in all directions. Thus,
phase amplitudes vary with take-o� angle of the ray from source to receiver and the azimuth
between source and receiver. Analytic formulas are available to account for the radiation
patterns if the focal mechanism is known. The source time function can also impact the
quality of observed seismic phases. Some seismic sources are impulsive; thus they have
impulsive arrivals. Others build slowly, causing more emergent arrivals. Others still can
rupture in unilateral motions, contributing to directivity e�ects, which can cause impulsive
arrivals in some directions and emergent arrivals in others. Other source e�ects relate to
frequency content, such as the corner frequency. Seismic sources radiate energy across a
range of frequencies (i.e. a spectrum). More high-frequency energy could lead to more
accurate picks, though this depends on the attenuation properties of the Earth, the band
pass of the instrument, and any �ltering applied by the analyst.

2.2 Propagation Path and Site Factors

Recordings of arrivals farther away from a source mean smaller amplitudes due to geometric
spreading (not frequency dependent) and anelastic attenuation (frequency dependent). Thus,
picks should be less accurate as distance increases. Both of these factors vary according to
phase and to region. For example, Sn spreads di�erently and attenuates di�erently than
Pn . Further, Sn for one region may spread di�erently and attenuate di�erently than Sn in
another region, even for adjacent regions (e.g. western U.S. vs. eastern U.S.).

Near-source and near-receiver noise can also impact signal quality. Though not generally
considered, noise near the source can degrade picking accuracy. For example, an earthquake
occurring within the coda of another earthquake would be expected to have a larger error
in picking than the same event without another event preceding it. Near-receiver e�ects are
at least as important: if the background noise for a given station is lower, the pick will be
more accurate.

2.3 Other Factors

Secondary phases have increased noise characteristics due to the fact that they are in the
coda of other arrivals. Therefore, picking of secondary phases can be dependent on the
characteristics of the phase that preceded it. The station type and instrument noise can
also a�ect signal quality. For example, an array has a better signal quality than a single
channel (the improvement is proportional to the square root of the number of array elements).
However, this is only true if the design of the array is matched to the signal characteristics.
For example, using a large-aperture array (teleseismic) for regional signals does not yield
as much improvement as using a smaller aperture array (regional). Finally, more accurate
arrival picks can be made from an instrument with lower noise characteristics.
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3 Analyst Factors

Analyst factors are those characteristics of an analyst that we believe are likely to have
an impact on travel-time picking, independent of signal quality. Though there are many
potential in
uences on how an analyst makes picks, (e.g. some analysts may pick better in
the morning than the afternoon) we discuss only the most signi�cant.

3.1 Analyst-to-Analyst Variability

Given the same seismogram, di�erent analysts pick the same phase di�erently. This would
be true even if the analysts had the same level of experience and training (see below). Phase
arrival time picks are dependent on the frequency band used in the pick. Analysts may have
the discretion to use their \favorite" suite of frequency bands even when constrained by an
analysis paradigm. We aggregate analyst-to-analyst variability into model error (the covari-
ance matrix of the model presented in Section 4). We do not attempt to model individual
analyst uncertainty. We claim that such a study is not feasible because the experiment would
require multiple measurements, over time, from each analyst. This experiment would change
what it is designed to study (analysts) | there would be a learning e�ect that could not
be removed. This learning e�ect would result in a very poor estimate of individual analyst
variability. If this learning e�ect could be removed, a well established, repeated measures
design could be applied; however the learning e�ect is problematic.

3.2 Analyst Experience

If it were possible to present an analyst with the same waveform several times over some
duration of time without the analyst recalling the waveform, for all but the highest SNR
signals, it is almost certain that a particular analyst would pick the same phase di�erently.
We would expect the analyst picks to be more consistent as the experience level of the analyst
increases; i.e. the variance of the residuals should decrease, though the bias might not.

3.3 Analyst Training

Analyst training could be lumped together with analyst experience, but one can also make
a case for separating the two. Simply increasing the experience should decrease residual
variance. On the other hand, if two or more analysts are provided with the same training,
this should have the e�ect of abating disagreement between their picks. Increased experience
alone is not guaranteed to do this.
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4 An Experimental Design and Statistical Model to

Study Uncertainty in Phase Arrival Picks

Having discussed the various factors that can a�ect phase picking, we now propose a model
for regional phase pick uncertainty that accounts for many of these factors. A multivariate
data point is composed of the phase arrival time picks (adjusted with automated picks)
from two analysts from the same seismic event. Without loss of generality we consider the
Pn and Sn phases. Let TPn and TSn denote the automated phase arrival time picks for the
Pn and Sn phases. Denote the analysts' picks as YPn1; YPn2 (Pn phase arrival time picks) and
YSn1; YSn2 (Sn phase arrival time picks). The multivariate data point is denoted

Y =

0
BB@
YPn1 � TPn
YSn1 � TSn
YPn2 � TPn
YSn2 � TSn

1
CCA : (2)

Note that it is not essential that the automated phase picks be "truth" for our development.
They simply provide a common objective reference point for the analyst picks. If ground
truth were available for a set of picks, we could then compare both analysts' picks with ground
truth and develop a model that would account for analyst bias as well as error. Based on
our discussion of the factors a�ecting measurement error, we select as the dominant model
factors that in
uence Y:

� Si1 | Event source (i.e., type) with nominal levels i1 = 1; 2; : : : ; s

� Pi2 | Wave path or geophysical medium with nominal levels i2 = 1; 2; : : : ; p

� Ei3 | Experience with nominal levels i3 = 1; 2; 3

� Ti4 | Paradigm training with nominal levels i4 = 1; 2

� Ci5 | Station con�guration with nominal levels i5 = 1; 2; 3

� Ii6 | Seismometer type with nominal levels i6 = 1; 2; 3

� mbi1 i2 i3 i4 i5 i6 j | Event magnitude covariate (continuous regression variable)

� �i1 i2 i3 i4 i5 i6 j | Epicentral distance covariate (continuous regression variable)

� xi1 i2 i3 i4 i5 i6 j | Signal-to-noise ratio (SNR) (continuous regression variable)

� �(i1 i2 i3 i4 i5 i6) j | Measurement error and model inadequacy with levels j = 1; 2; : : : ; n:

When formally writing the model, we subscript the multivariate data vector as Yi1 i2 i3 i4 i5 i6 j.
We dispense with the subscripts when there is no loss of clarity. The covariatesmb; �; and; x
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are regression variables with the usual assumption of being nonrandom. We de�ne the weight
function

w(x; 
) =

8><
>:

1 if x < �L


 if x > �U

1 � 1�

log

10
(�U )�log10(�L)

log10(x=�L) sec otherwise

0 < 
 < 1: (3)

Here, �L and �U are assumed known and as discussed in Section 5, 
 is estimated, along with
other model parameters, with regional data. Note the similarity between Equations 1 and 3
| apart from the multiple �0 they are the same. Because phase pick measurement error is
a function of SNR, we adjust (weight) the data vector Y and form a new vector

Z =
Y

w(x; 
)
: (4)

Weighting Y to form the new vector Z is necessary to satisfy standard assumptions of
constant covariance structure in multivariate analysis of variance (see [Rencher, 1995] and
[Rencher, 1998]). We show, in the following paragraphs, that the weighting Equation 3 is
central to the phase pick uncertainity model developed in this report. For the new data
vector Z, a full factorial multivariate analysis of covariance model (MANCOVA) is

Zi1 i2 i3 i4 i5 i6 j = Covariates +Main E�ects +

Two-way Interactions + Three-way Interactions + : : :+

Six-way Interaction + �(i1 i2 i3 i4 i5 i6) j : (5)

This model and associated analysis is unwieldy. We suggest a station-centric approach to
reduce the dimensionality of the problem and thereby eliminate the higher-order interactions.
This parsimonious approach allows a multivariate analysis on data from a speci�c station
con�guration, seismometer type, analyst experience and paradigm training, thereby allowing
us to eliminate the factors E,T,C and I by holding them constant. The model for this
approach is

Zi1 i2 j = �+ � mbi1 i2 j + � �i1 i2 j + Si1 +Pi2 + SPi1 i2 + �(i1 i2) j

i1 = 1; 2; : : : ; s; i2 = 1; 2; : : : ; p; j = 1; 2; : : : ; n: (6)

We can further clarify Equation 6 by combining the S, P, and SP terms into a single mean
term (see [Rencher, 1995] and [Rencher, 1998]). This \cell-means" representation is

Zi1 i2 j = �i1 i2
+ � mbi1 i2 j + � �i1 i2 j + �(i1 i2) j

i1 = 1; 2; : : : ; s; i2 = 1; 2; : : : ; p; j = 1; 2; : : : ; n; (7)
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which has a familiar regression model form. We model the �(i1 i2) j as independent and
identically distributed multivariate Gaussian with a zero mean vector and covariance matrix

� =

0
BB@
�2 0 � 0
0 � 2 0 �
� 0 �2 0
0 � 0 � 2

1
CCA : (8)

The main objective of this paper is to derive a model for the variances of YPn and YSn .
While they are parameters in the multivariate model of Z, �2 and � 2 are not of themselves
the variances of YPn and YSn . The correct variance equation for these variables is derived in
Section 4.2, Equation 9. Equation 7 makes clear the fact that for each i1; i2 combination, our
multivariate model is essentially four univariate regression models that are probabilistically
linked together with the multivariate error term �(i1 i2) j .

The error covariance matrix Equation 8 has a special structure. As discussed in Section
4.2, we model the marginal covariance structure of the two analysts as equal (the 2 � 2
block covariance matrix forming the diagonal) with the assumption that an analyst's picking
errors for Pn and Sn are not correlated. The o�-diagonal block covariance matrix models
the conjecture that the two analysts' phase pick errors for Pn (Sn ) may be correlated, but
an analyst's pick error for Pn is not correlated with another analysts' pick error for Sn .
The thought is that the analysts may follow a common analysis paradigm (model factor
T) that would introduce a positive correlation between their phase pick errors for the same
phase. These features are captured in the structure of the covariance matrix Equation 8 and
ultimately in Equation 9.

Denote the total number of vector responses as N . Because each vector response has 4
observations, there are a total of 4N data points. Referring to the cell-means formulation
(Equation 7), there are 4ps mean parameters, 2 covariate parameters, 4 covariance matrix
parameters and 1 weight function parameter for a total of 4ps + 2 + 4 + 1 parameters. To
ensure a su�cient number of data vectors N for parameter estimation and data analysis,
we must have 4N � (4ps + 3 + 4) > 1, which is minimally satis�ed if N > ps + 2. Ideally,
we want N � ps + 2. Each data vector Yi1 i2 j is realized from the phase time picks of two
analysts, so we need a total of 2N analysts to perform the experiment.

Fewer analysts will require special attention because the experiment will be unbalanced
(unequal number of analysts in each source by path combination). There might be a per-
ception that the experiment we have proposed can be accomplished with the repeated use of
a small number of analysts. As noted in Section 3, this experiment would require multiple
measurements over time from each analyst, and would introduce a learning e�ect that could
not be removed. We argue that this learning e�ect would result in a very poor estimate
of phase pick variability and would make inferential statistical analysis very di�cult. If
this learning e�ect could be removed, a well established, repeated measures design could be
applied; however the learning e�ect is problematic. From a statistical perspective, analysis
results from an unbalanced experiment are much more defensible than an experiment that
introduces dependence (temporal correlation) into the observations.

7
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To conduct the experiment, we randomly assign two di�erent analysts, with similar ex-
perience and training, to each seismic event and collect the analysts' picks of the phase
arrival times. Note that each analyst will only be required to identify two phase arrival
times. Thus, the experiment requires a nominal number of analysts but very little time from
each analyst. The optimal experimental procedure involves a double blind implementation;
that is, waveforms are given to an analyst in a operational setting where that analyst is
not aware that his/her phase pick is a data point in an experiment, and the operational
system/process is also unaware that an event is part of an experiment. We recognize that
such an optimal experiment may not be feasible; however, we recommend that this is the
standard that should be sought. This experimental design is illustrated in Figure 1.

P1 (MAKZ) P2 (AAK) P3 (TLY)

S1 (EX)

S2 (EQ)
01/30/1999
03:51
mb = 5.9

01/27/1999
06:25
mb = 3.9

06/29/1996
01:49
mb = 5.0

05/15/1995
04:06
mb = 6.1

100 200300 400 200 600
Time (s)

Figure 1: Experimental design with two event sources (Si1), three wave paths (Pi2) and
two distinct events in each cell. Two di�erent randomly selected seismic analysts examine
each waveform. Each analyst makes arrival time picks for the Pn and Sn phases. Event
magnitude, and epicentral distance (source to seismometer) are integrated into the analysis
as covariates.

4.1 Model Relevance

Let us compare our model (Equations 6 and 7) with the current operational measurement
error model Equation 1. Equation 7 models dependence on SNR with the weight function
Equation 3 and Equation 4, magnitude dependence with � �mb, epicentral distance depen-
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dence with � � �, source and path dependence with �i1 i2
, and a true random component

� re
ecting error not accounted for with model terms. Equation 1 has a term for SNR
dependence but is not adjusted for magnitude, epicentral distance, and path dependence.
We believe that it also has an implicit term for random error | the measurement error
cannot drop below a minimum value regardless of SNR, which essentially accounts for the
existence of true random error. What of the missing terms in Equation 1? Perhaps these
terms are not signi�cant, but the reason for their omission in Equation 1 is more likely due
to the fact that Equation 1 is used to assign measurement error to arrival time picks prior
to event formation. At this stage neither the location nor the magnitude of the event is
known, so the terms for magnitude dependence, distance dependence, and path dependence
cannot possibly be used. Hence, Equation 1 is probably of the correct basic form, though it
could be improved by allowing regionally dependent terms and by using a more sophisticated
model for random error which would include the o�-diagonal covariance terms. This model
has utility even if the terms in Equation 6 are signi�cant. Equation 6 (or 7) can be used
to improve measurement error estimates as soon as an initial event location and magnitude
have been determined. The net result of this is to give an improved estimate of the error
ellipse associated with the location. Thus, we propose that operational systems should in-
clude at least two models for measurement error: phase pick error as a function of SNR
alone (Equation 1) used prior to event location, and a more sophisticated model used after
the event has been located (Equation 6). We discuss these ideas further in the next section.

4.2 Discussion

Assuming that a su�cient number of analysts is available, that a proper data set can be
gathered and Equation 7 adequately models the analysts' phase arrival picks, how do we use
Equation 7 to derive measurement error (Cov(Y))? The answer to this question begins with
the observation that, for known �; �; �; and 


Cov(Y) = w(x; 
)2 Cov(Z) = w(x; 
)2 �: (9)

Note that diagonal elements of Equation 9 are precisely Equation 1 when �0 is replaced with
a variance component from �. Therefore, the primary objective of our proposed model and
analysis is to obtain an accurate estimate of the parameters in Equation 9 (� and 
). All
other parameters in Equation 6 (or 7) properly account for systematic data structure and
are necessary to obtain the most accurate estimates of � and 
. Thus, we use Equation 9 to
obtain a phase pick error model that is conditional on the estimated values of �; �; �; and 
.

In applying Equation 6 (or 7) to regional data, the covariate terms can be easily calculated
given the event magnitude and distance to a station. We can also measure SNR at a station.
Some logic di�culty arises in the use of the terms S, P and SP (or �i1 i2

). These terms model
a speci�c source type/wave path combination (e.g., an earthquake in central Italy recorded
by a particular station) and therefore have values for these terms only for combinations that
were included in our regression. Thus, we should have possibly three versions of Equation 9;

9
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1. parameters � and 
 estimated with the terms S, P and SP and all covariates removed
from Equation 6

2. parameters � and 
 estimated with the terms S and SP removed from Equation 6

3. parameters � and 
 estimated with Equation 6 .

Version 1 could be used in initial seismic processing (event association). Version 2 could
be used after an event has been formed (known path) but not identi�ed (unknown source).
Version 3 could be used after an event has been identi�ed as an explosion and a more focused
location con�dence ellipse is necessary for on-site inspection activities. As a �nal note, it may
be determined that the terms S and SP are not statistically signi�cant and as a consequence
versions 2 and 3 would be statistically equivalent.

5 Data Analysis

In this section we brie
y outline data analysis options associated with Equation 6 (or 7). We
refer to appropriate references for mathematical and statistical details. As stated in section
4.2, the primary objective of our model and analysis is to obtain an accurate estimate of
the parameters in Equation 9. We propose maximum likelihood estimates (MLE) for these
parameters and, in particular, iteratively re-weight maximum likelihood (least squares) es-
timation (see [Stuart et al., 1999]). An iterative technique is necessary because the weight
Equation 3 is a function of the parameter 
. With regional data and associated SNR and
covariate data we make an initial guess for 
 and then weight the data (Equation 4). We then
obtain standard MLE's for the parameters in Equation 6 (or 7) with the added constraint
that the estimates of �, �, � and � (Equation 8) give a positive de�nite covariance matrix�.
The iterative procedure continues with a MLE update of 
 and then the model parameters
subject to the positive de�nite constraint for �. This iterative procedure continues until
the parameters numerically converge. The positive de�nite constraint for � can be mathe-
matically summarized as �2 > j�j and � 2 > j�j. From another perspective, these constraints
ensure that the correlations formed from the elements of � are bounded between �1 and 1.

We can select a parsimonious model by determining if model terms are statistically sig-
ni�cant. Likelihood ratio techniques can be used to perform these tests. The statistical and
theoretical details of these analyses are detailed in [Anderson, 1984], [Mardia et al., 1995],
[Press, 1982], [Rencher, 1995] and [Rencher, 1998]. Through these tests we may determine
if the terms S, P and SP are necessary to adequately describe the data. We may also make
this determination for the model covariates. We can study the adequacy of a �tted model by
an analysis of agreement with model assumptions ([Rencher, 1995]). An analysis of model
assumptions can also guide, if necessary, the construction of a more sophisticated version
of Equation 3. Fitted model residuals can reveal model inadequacy (departures from model
assumptions) as a result of emergent phases and other e�ects. Emergent phases introduce
uncertainty in an analyst's ability to pick a phase arrival. For example, the arrival of the

10



LA-UR-01-0747

Pn and Pg phases may be di�cult to distinguish. This can result in violations of the model
assumptions.

6 Summary and Future Work

We have embedded a general form of the IDC/USNDC phase pick measurement error model
(Equation 1) into a multivariate statistical model (Equation 6). Our model can be used to
optimally calibrate this picking error model to regional data. Our proposed model can also be
used to study the statistical relevance of regional seismic factors that may in
uence analyst
phase pick variability. We can assess the correlation that may be present between analysts'
phase picks as a result of a common paradigm that analysts may use. Finally, we can use
our statistical model to guide the construction of a more sophisticated version of Equation 1
and optimally calibrate this improved model to regional applications. This report proposes
an analysis model and experimental design, and solicits expert technical feedback to improve
our analysis strategy. We plan to apply the analysis outlined in this paper, with suggested
improvements, to appropriate regional data and report on our �ndings in a follow-on paper.
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